Mathematics of Computing Final Exam (Max Marks 50, Time 3h)

Indian Statistical Institute, Bangalore

May 05, 2017

NB: (a) Here w^r represents the reverse of the string w.

- Q1. $(2 \times 5 = 10)$ In the following, assume that regular languages are closed under the operations Union, Complement and Star.
 - (a) Prove or disprove: The intersection of two regular languages is regular.
 - (b) Prove or disprove: If L and M are regular languages then the difference L-M is also regular.
 - (c) Let L be a regular language. Let $L^r = \{w^r | w \in L\}$. Show that the language L^r is regular.
 - (d) Let L be a regular language. Let L^s be a language where every occurrence of the symbol a in every string $w \in L$ is replaced by the symbol b. Note that b may also occur in w. Show that L^s is regular.
 - (e) Show that $L = \{0^n | n \text{ is prime } \}$ is not regular.

Q2. (4+2+4=10)

- (a) Consider the language $L = \{ww^r | w \text{ is a binary string }\}$. Prove or disprove that L is context free.
- (b) State clearly the *pumping lemma* for context free languages.
- (c) Prove that the language $L = \{ww|w \text{ is a binary string}\}$ is not context free.
- Q3. $(2 \times 6 = 12)$ State if true or false and then prove your claim. You may assume, as proved in class, that A_{TM} is Turing recognizable but not Turing decidable.
 - (a) The language $\{ < D, w > | D \text{ is a DFA and } D \text{ accepts } w \}$ is Turing decidable.
 - (b) The language $\{ \langle G, w \rangle | G \text{ is a CFG and } w \in L(G) \}$ is Turing decidable.
 - (c) The language $\overline{A_{TM}}$ is Turing recognizable.

- (d) It is possible to list all languages over strings over a finite alphabet.
- (e) The language $\{ < D_1, D_2 > | \text{the DFAs } D_1 \text{ and } D_2 \text{ recognize the same language} \}$ is Turing decidable.
- (f) If $L_1 \leq_T L_2$ i.e., if L_1 Turing reduces to L_2 , then if L_1 is Turing decidable then so is L_2 .

Q4. $(2 \times 4 = 8)$

- (a) Describe the language $Th(N, +, \times)$.
- (b) Give a sentence in $\operatorname{Th}(N,+,\times)$ that expresses the commutative law of multiplication. You may assume that in addition to the usual logic operators you also have the implication operator (\Rightarrow), ie if ϕ_1 and ϕ_2 are formulas then $\phi_1 \Rightarrow \phi_2$ is a formula.
- (c) State formally what it means for a proof to be verifiable and a proof system to be sound.
- (d) Given that $\operatorname{Th}(N,+,\times)$ is not decidable, and that provable statements in $\operatorname{Th}(N,+,\times)$ are Turing recognizable, show that there is at least one statement in the theory that is not provable.

Q5. $(2 \times 5 = 10)$

- (a) Define the complexity classes P and NP.
- (b) What is meant by a polynomial time Turing reduction $L_1 \leq_P L_2$?
- (c) Define the class of *NP Complete* problems?
- (d) The language CLIQUE contains all pairs $\langle G, k \rangle$ where the graph G has k vertices which form a complete subgraph. The language INDEPENDENT-SET contains all pairs of the form $\langle G, k \rangle$ where the graph G has k vertices which have no edges between them. Use the fact that CLIQUE is NP-Complete to show that INDEPENDENT-SET is NP-Complete.
- (e) CLIQUE $\in NP$. So both CLIQUE and its compliment have a polynomial time verifiable certificate. True or False? Justify.